Top30名校背景提升规划课程由集思未来开发,由Top30院校教授、博士、学长学姐进行开展,梳理科研对于升学的重要性和必要性,帮助学生了解冲击Top30名校的秘诀,以及解决绩点低、无大牛推荐信、无论文发表的问题,挖掘科研兴趣,便于学生申请深造择校阶段,对科研有更深刻的理解和认知,提前进行科研规划,降低试错成本,形成良性长久的升学发展路线。
L1:无任何学科经验的高中生
L2:对学科基础知识有了解的高中生;跨专业大学生
L3:对行业有相当研究,优秀的高中生;本专业大学生
L4:优秀的大学生;研究生
密集项目:应用数学专题:数学视角看世界 分形几何学解析不规则图形周长测量 以英国海岸线为例
Jeoren教授曾在荷兰奈梅亨大学学习理论物理学,1994年在阿姆斯特丹大学获得理论物理学博士学位。1995-1999年在华威大学数学研究所(作为欧盟HCM研究员,EPSRC研究助理和讲师),1999年以来在伦敦帝国理工学院(2005年作为应用数学教授)。在此期间,他还获得了休斯顿大学的NWO人才研究奖学金(1998年)和伦敦帝国理工学院的EPSRC高级研究奖学金(2001-2006年)。2009年-2016年,教授担任帝国理工学院数学系研究主任。随后与2016-2019,任职于欧盟HORIZON 2020-创新研究培训网络(ITN)“复杂系统中的关键转变”(CRITICS)工程项目。并于2019年担任英国工程和自然科学研究理事会(EPSRC)随机系统数学博士培训中心委员。近年来,他担任过不同的访问职位,例如,在IMPA(里约热内卢de Janeiro)、UNICAMP(坎皮纳斯)、MSRI(伯克利)、CRM(蒙特利尔)和rim(京都)。Jeoren教授是数学系动力系统研究小组的创始人(与Stefano Luzzatto于2000年合作)。 Professor Jeoren studied Theoretical Physics at the University of Nijmegen in The Netherlands and obtained his PhD in Theoretical Physics from the University of Amsterdam in 1994. Since 1995 he has resided mainly in the UK, from 1995-1999 at the Mathematics Institute of the University of Warwick (as an EU HCM Research Fellow, EPSRC research associate and lecturer) and since 1999 at Imperial College London (per 2005 as Professor of Applied Mathematics). During this period, he also held an NWO Talent Research Fellowship at the University of Houston (1998) and an EPSRC Advanced Research Fellowship at Imperial College London (2001-2006). In recent years he had various visiting positions, for instance at IMPA (Rio de Janeiro), UNICAMP (Campinas), MSRI (Berkeley), the CRM (Montreal) and the RIMS (Kyoto).
分形是具有自相似性的几何对象。分形的数学理论是非常现代的,已经发现了从生物,化学,物理到金融等诸多方向应用。分形,如著名的曼德尔布罗特集,也因其内在美而受到艺术欣赏。本项目旨在用不同的分形举例,挑战学生传统的直觉,在理论和实践中学习分形的相关知识。Fractals are geometric objects characterized by self-similarity. The mathematical theory of fractals is very modern and has found already numerous applications, from biology, chemistry, and physics to finance! Many fractals, such as the celebrated Mandelbrot set, are also appreciated artistically for their intrinsic beauty. In this program, the participants will be introduced to fractals in an example-driven journey that will challenge conventional intuition and lead to an appreciation of fractals in theory and practice.
致理计划:计算生物学专题:基于深度学习与数值模拟方法的蛋白质三维结构分析与预测,以AlphaFold 为例【大学组】
Sorin导师是布朗大学计算和数学科学和计算机科学终身正教授,曾任布朗大学计算分子生物学中心主任。在加入布朗之前,他是 Celera Genomics 的高级主管和信息学研究负责人,他们共同撰写了 2001 年的科学论文“人类基因组的序列”,该论文迄今为止被引用超过 12,000 次,是最重要的论文之一。引用的科学论文。 2003 年,他加入了应用系统科学研究员的行列,这是一家拥有 800 名科学家的公司中仅有的六名科学研究员之一。 2000年,他获得了统计力学中一个 50 年前未解决的问题,三维 Ising 模型问题的否定解(计算难点)。该工作被列入美国能源部前 25 年最重要的 100 项发现,并作为美国能源部在高级科学计算方面的第 7 项顶级成就。 Sorin教授的研究重点是算法和计算复杂性以及统计物理学。他是计算生物学杂志的主编,他是 RECOMB 会议系列的联合创始人,麻省理工学院出版社计算分子生物学系列的联合编辑和 Springer-Verlag 讲座笔记的联合编辑在生物信息学系列。
Prof. Sorin is the Julie Nguyen Brown Professor of Computational and Mathematical Sciences and Professor of Computer Science, and former Director of the Center for Computational Molecular Biology at Brown University. Before joining Brown, he was the Senior Director and then Head of Informatics Research at Celera Genomics, they co-authored the 2001 Science paper “The Sequence of the Human Genome,” which, with over 12,000 citations to date, is one of the most cited scientific paper. In 2003 he joined the ranks of Applied Biosystems Science Fellows, one of just six Science Fellows in a company of 800 scientists. In 2000, he obtained the negative solution (computational intractability) of a 50 years old unresolved problem in statistical mechanics, the Three-Dimensional Ising Model Problem. This work was included in the Top 100 Most Important Discoveries of the U.S. Department of Energy’s first 25 years, and as the 7th top achievement of DOE in Advanced Scientific Computing. Professor Istrail's research focuses on computational molecular biology, human genetics and genome-wide associations studies, medical bioinformatics of autism, multiple sclerosis, HIV, preterm labor and viral immunology, algorithms and computational complexity, and statistical physics. He is Editor-in-Chief of the Journal of Computational Biology and he is co-founder with of the RECOMB Conference series, and co-Editor of the MIT Press Computational Molecular Biology series and of co-Editor of the Springer-Verlag Lecture Notes in Bioinformatics series.
本项目将带领学生深入了解蛋白质折叠的基础理论、预测算法和应用实践。通过探索蛋白质结构的基本原理、折叠过程中的能量景观、以及各种模型和预测方法,学生将学会如何应用这些知识于生物医学研究。课程内容涵盖从蛋白质二级结构预测到深度学习在蛋白质折叠预测中的应用,旨在培养学生在生物信息学、药物设计和精准医疗领域的研究能力。
This course will immerse students in the foundational theories, predictive algorithms, and practical applications of protein folding. By exploring the basic principles of protein structure, the energy landscape during folding, and various models and prediction methods, students will learn how to apply this knowledge in biomedical research. The content ranges from secondary structure prediction to the application of deep learning in protein folding prediction, aiming to develop students' research capabilities in bioinformatics, drug design, and precision medicine.
密集项目:EE电子工程 模拟电路专题:基于CMOS半导体技术的模拟集成电路开发及其在物联网与机器人设计等领域中的应用研究【大学组】
Andreas教授1998年获英国伦敦大学学院电子与电气工程博士学位。他是伦敦大学学院电子与电气工程系的研究主任(领导本系REF2014的提交),并领导生物电子学小组。他的研究兴趣包括生物医学模拟和混合信号集成电路,传感器和信号处理应用。他在改善有源医疗设备(如脊髓和大脑刺激器)的集成电路设计的安全性和性能方面做出了突出贡献。他在英国和国际上有许多跨学科研究合作。他在期刊和国际会议论文集上发表了300多篇文章,并拥有多项专利。他曾多次获得最佳论文奖,并已指导毕业超过25名博士生。Andreas教授在2015至2019年间曾担任IEEE Transactions on Circuits and Systems I: Regular Papers主编,现任IEEE Transactions on Biomedical Circuits and Systems的副主编,并任职于国际生理测量咨询委员会。Andreas导师同时是电气与电子工程师协会会士(IEEE Fellow, Class of 2018)与全球第二(仅次于IEEE)的国际专业学会-英国工程技术学会会士(IET Fellow) Professor Andreas (FIEEE, FIET, CEng) received the Ph.D. degree in Electronic and Electrical Engineering from University College London (UCL), London, U.K.. He is the Research Director in the UCL Department of Electronic and Electrical Engineering (he led the REF2014 submission of his department) and leads the Bioelectronics Group. His research interests include analogue and mixed-signal integrated circuits for biomedical, sensor and signal processing applications. He has made outstanding contributions to improving safety and performance in integrated circuit design for active medical devices such as spinal cord and brain stimulators. He has numerous collaborations for cross-disciplinary research, both within the UK and internationally. He has published over 300 articles in journals and international conference proceedings, several book chapters, and holds several patents. Professor Demosthenous is currently the Editor-in-Chief of the IEEE Transactions on Circuits and Systems I: Regular Papers, an Associate Editor for the IEEE Transactions on Biomedical Circuits and Systems and serves on the International Advisory Board of Physiological Measurement. He was an Associate Editor for the IEEE Transactions on Circuits and Systems I: Regular Papers (2008-12), and served on the editorial board of the IEEE Transactions on Circuits and Systems II: Express Briefs as Deputy Editor-in-Chief (2014-15) and Associate Editor (2006-07). He has been a member of the Technical Programme Committee of several IEEE conferences including the European Solid-State Circuits Conference (ESSCIRC), Neural Engineering (NER) and the International Symposium on Circuits and Systems (ISCAS). Professor Andreas is a Fellow of the Institution of Electrical and Electronic Engineers (FIEEE; Class of 2018) for contributions to integrated circuits for active medical devices, a Fellow of the Institution of Engineering and Technology (FIET) and a Chartered Engineer (CEng).
项目中导师将介绍模拟电路的概念,并侧重于晶体管模型,小信号分析,电流反射镜,单级放大器,差分放大器和运算放大器等技术,需要访问电路模拟器程序。学生们将在导师的指导下使用Multisim或Spice(例如CoolSPICE)模拟电路,并在此过程中学习到高级微电子课程中分析、设计和优化现代模拟集成电路中包括建模、晶体管级电路设计和仿真等不同开发方法。并对一些应用实例进行剖析,包括物联网、生物电子、脑机接口和机器人等领域的应用。学生将在项目结束时,提交项目报告,进行成果展示。The program instructors will introduce the concepts of analog circuits and focus on techniques such as transistor models, small signal analysis, current reflectors, single stage amplifiers, differential amplifiers, and operational amplifiers, requiring access to circuit simulator programs. Students will simulate circuits using Multisim or Spice (e.g. CoolSPICE) under the guidance of the instructor and in the process learn different development methods including modeling, transistor-level circuit design and simulation in the analysis, design and optimization of modern analog integrated circuits in the advanced microelectronics course. Students will submit a project report at the end of the project to present their results.